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AFIT/GE/ENG/11-07 

 

Abstract 

 

Interference lithography (IL) is an alternative photolithography method to standard masking 

techniques used to fabricate semiconductor devices.  In photolithography, a patterned mask or 

template creates periodic structures in integrated circuits (ICs) and can take considerable time to 

fabricate on a large scale.  Rather than using a conventional mask, IL directly exposes an 

interference pattern created from the superposition of multiple laser beams to generate patterned 

layers within a semiconductor device. The benefits of IL include single-step processing, large-

scale pattern fabrication, and the creation of defect-free structures.  The goal of this work is to 

develop unique holograms on semiconductor-metal thin films to characterize as potential optical 

metamaterials.  This is achievable by developing a fabrication recipe to include exposure 

methods, exposure dosages, and material development. This study developed an IL capability at 

AFIT for the first time with period resolution below 230nm. It also identified initial acceptable 

photoresist materials and exposure dosages, and a path to follow to optimize this process. The 

potential impact of this is to make IL a standard in optical metamaterial fabrication, which 

decreases manufacturing time and allows for less error in production.  These aspects support a 

variety of Air Force applications, including high efficiency solar cells and spacecraft thermal 

management. 

 



 

 

v 

 

 

Acknowledgements 

 

I would like to express my sincere appreciation to my academic and research advisor, Dr. 

Michael Marciniak, for his guidance and support throughout the course of this effort. The insight 

and experience was certainly appreciated. I would also, like to thank my sponsor, Dr. Augustine 

Urbas, from the Materials and Manufacturing Directorate at the Air Force Research Laboratory 

for both the support and latitude provided to me in this endeavor. 

I am also indebted to the many maintenance professionals who spent their valuable time 

explaining the processes and procedures they used in the maintenance of their support 

equipment. Special thanks go to Mr. Paul Cassity, who was my liaison and was always available 

to answer my questions.  

                     Stanley D. Crozier Jr. 

 

 

 

 

 

 

 

 

 

 



 

 

vi 

 

TABLE OF CONTENTS 

                Page 

Abstract .........................................................................................................................................  iv 

Acknowledgments...........................................................................................................................v 

Table of Contents ..........................................................................................................................  vi 

List of Figures ..............................................................................................................................viii 

List of Abbreviations ....................................................................................................................  xi 

I. Introduction ......................................................................................................................... 1 

1.1 Importance of Interference Lithography ....................................................................... 2  

1.2 Motivation for Interference Lithography ...................................................................... 5 

1.3 Organization .................................................................................................................. 5 

II. A Physical and Mathematical Understanding of Interference Lithography and Its   

 Application of Novel Optical Materials .............................................................................. 6 

 2.1 Interference ................................................................................................................... 6 

 2.2 Wavefront-Splitting Interferometers ............................................................................. 8 

  2.2.1 Lloyd’s Mirror ............................................................................................. 12 

 2.3 Amplitude-Splitting Interferometer ............................................................................ 16 

 2.4 Interference Lithography ............................................................................................ 18 

  2.4.1 Two-Dimensional Interference Lithography ............................................... 26 

 2.5 Applications ................................................................................................................ 27 

  2.5.1 Photonic Crystals ......................................................................................... 28 

  2.5.1.1 Two-Dimensional Photonic Crystals ............................................ 30 

  2.5.1.2 Sub-Micron Two-Dimensional Photonic Crystals ........................ 37 

  2.5.2 Plasmonics ................................................................................................... 40 

  2.5.2.1 Enhanced Transmission with Plasmonics ..................................... 40 

  2.5.2.2 Directional Transmission .............................................................. 42 

  2.5.2.3 Plasmonic Absorption ................................................................... 44 

 2.6 Chapter Conclusion ..................................................................................................... 48 

III. Equipment, Measurements, and Procedures ..................................................................... 49 

 3.1 Optical Equipment: Multimode Laser ........................................................................ 49 

 3.2 Clean Room Materials and Equipment ....................................................................... 51 

 3.2.1 Materials: Substrate and Photoresist ........................................................................ 51 



 

 

vii 

 

  3.2.2 Clean Room Equipment: Mask Aligner, Surface Profilometer, SEM ......... 53 

 3.3 Procedures ................................................................................................................... 55 

  3.3.1 Michelson Experiment: Setup and Measurements ....................................... 55 

  3.3.2 Lloyd’s Mirror Experiment: Setup and Measurements ............................... 58 

  3.3.3 Clean Room Procedures ............................................................................... 60 

  3.3.4 Sample Characterization .............................................................................. 61 

 3.4 Chapter Conclusion ..................................................................................................... 64 

IV. Results and Discussion ..................................................................................................... 65 

 4.1 Laser Profile, Spatial Filtering, and Processing Environment .................................... 65 

 4.2 Michelson Experiment ................................................................................................ 67 

 4.3Lloyd’s Mirror Experiment .......................................................................................... 69 

 4.4 Chapter Conclusion ..................................................................................................... 75 

V. Conclusion and Recommendations ................................................................................... 76 

Bibliography ................................................................................................................................. 79 

 

 

 

 

 

 

 

 

 



 

 

viii 

 

List of Figures 

Figure                 Page   

1.1 Beginning Photolithographic Stages of p-n Junction Fabrication Schematic ...........................3 

1.2 Final Photolithographic Stages of p-n Junction Fabrication Schematic ...................................4 

2.1 Interference Fringe Pattern Water-Wave Representation .........................................................7 

2.2 Young’s Experiment Schematic ...............................................................................................9 

2.3 Lloyd’s Mirror Schematic ....................................................................................................... 13  

2.4 Lloyd’s Mirror Interferometer Schematic ............................................................................... 14 

2.5 Optical Path Difference in a Lloyd’s Mirror Interferometer .................................................. 15 

2.6 The Michelson Interferometer Schematic ............................................................................... 17 

2.7 Two-Beam Interference Representation ................................................................................. 19 

2.8 Optical Arrangements for Interference Lithography .............................................................. 21 

2.9 Lloyd’s Mirror Interference Grating ....................................................................................... 22 

2.10 Cylindrical Transverse Mode Patterns .................................................................................. 23  

2.11 Spatial Filter Schematic ........................................................................................................ 24 

2.12 Reflection Phase Grating ...................................................................................................... 26 

2.13 Sensitivity Curve of Visible SU-8 Photoresist ..................................................................... 30 

2.14 Two-Dimensional Structures Recorded by Double Holographic Exposure ......................... 31 

2.15 Fabrication Process of 2D Structures .................................................................................... 31 

2.16 Two-Dimensional Structures with Hexagonal Lattice .......................................................... 32 

2.17 Gap Map for Hexagonal Lattices .......................................................................................... 33 

2.18 Representation of a Three-Grating Diffraction Mask ........................................................... 34 

2.19 Optical and SEM Images of Columns Created by Interference Lithography ....................... 35 



 

 

ix 

 

Figure                 Page   

2.20 Transmission Spectra of CdSe and Polymer Photonic Crystals ........................................... 36 

2.21 Laser Interference Lithography Fabrication Schematic ........................................................ 38 

2.22 Laser Interference Lithography Metallization Process Schematic ....................................... 39 

2.23 Normal Incidence Transmission Spectra .............................................................................. 42 

2.24 Electron Micrograph of a Slit Surrounded by Periodic Corrugations ................................... 43 

2.25 Angular Transmission-Intensity Distributions of a Slit ........................................................ 44 

2.26 Schematics of Plasmonic Blackbody .................................................................................... 47 

3.1 Kimmon Koha HeCd 325 nm Laser Beam Profile ................................................................. 50 

3.2 S1800 Series Plot of Photoresist Spin Coating Speeds ........................................................... 52 

3.3 Drawing of a Surface Profilometer ......................................................................................... 54 

3.4 Michelson Interferometer Design Configuration .................................................................... 56 

3.5 Interference Fringes Created by the Michelson Interferometer .............................................. 57 

3.6 Exposure dosages as a function of Photoresist Thicknesses for S1800 Series Resist ............ 57 

3.7 Optical configuration of the Lloyd’s Mirror Interferometer ................................................... 58  

3.8 Lloyd’s Mirror Interference Fringe Periodicity ...................................................................... 59 

3.9 Ideal Ratio of Photoresist Thickness to Interference Pattern Period  ..................................... 61 

3.10 The Reflection Phase Grating Plot ........................................................................................ 62 

3.11 Reflection Phase Grating Plots for θm and Δθ ...................................................................... 63 

4.1 The Michelson Interferometer S1818 Sample Results ........................................................... 68 

4.2 Lloyd’s Mirror Exposure Dosages for Increasing Incident Angles ........................................ 69 

4.3 Exposure Area of the 1.47cm Laser Beam ............................................................................. 71 

4.4 Top-Down View of 230 nm Features in S1805 ...................................................................... 73 



 

 

x 

 

Figure                 Page   

4.5 Large Area Capture of 230 nm S1805 Features...................................................................... 73 

4.6 Side-View of 230 nm S1805 Features .................................................................................... 74 

4.7 Irregularity within the S1805 Feature Consistency ................................................................ 74 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xi 

 

List of Abbreviations 

Abbreviation               Page  

PR Photoresist ............................................................................................................... 2 

IC Integrated Circuit .................................................................................................... 2  

2D Two-Dimensional ................................................................................................... 4 

3D Three-Dimensional ................................................................................................. 4 

IL Interference Lithography ........................................................................................ 5  

OPD Optical Path Difference......................................................................................... 14  

TEM Transverse Electro-Magnetic ................................................................................ 20 

UV Ultraviolet ............................................................................................................. 20  

PC Photonic Crystal .................................................................................................... 28  

PBG Photonic Band-Gap ............................................................................................... 28  

RIE Reactive Ion Etching ............................................................................................. 32  

SEM Scanning Electron Microscope ............................................................................. 35  

ITO Indium-Tin Oxide ................................................................................................. 35 

DTGS Deuterated Triglycine Sulfate ............................................................................... 35 

FTIR Fourier-Transform Infrared Spectrometer ............................................................ 35 

LIL Laser Interference Lithography............................................................................. 38 

PMMA Poly-Methyl Methacrylate .................................................................................... 44  

UVFS UV-Fused Silica .................................................................................................... 55 

ARC Anti-Reflective Coating ........................................................................................ 55 

DI Distilled Water ...................................................................................................... 60 

 



 

 

1 

 

DEVELOPMENT OF AN INTERFERENCE LITHOGRAPHY CAPABILITY USING 

A HELIUM CADMIUM ULTRAVIOLET MULTIMODE LASER FOR THE 

FABRICATION OF SUB-MICRON-STRUCUTURED OPTICAL MATERIALS 

I. Introduction 

The objective of this thesis is to investigate optical lithography as a standard method for the 

fabrication of optical metamaterials. Optical metamaterial devices affect the electric and 

magnetic fields through capacitive- and inductive-like nanostructures. Polarimetric scatterometry 

is an optical technique practiced at AFIT to characterize the bidirectional transmission and 

reflection of light incident upon a sample. This type of characterization combined with a 

fabrication method can lead to developing materials not found in nature that possess unique 

optical properties. However, this process is limited by the AFIT’s inability to fabricate 

metamaterial samples in house. The capability to fabricate metamaterials in house would 

eliminate reliance on outsourced samples. By implementing optical photolithography, AFIT can 

attain self-sufficiency by optimizing in-house metamaterial fabrication, thus advancing 

characterization research by increasing sample throughput.  

The goal of this research was to explore the capabilities of manufacturing metamaterial 

samples with equipment currently in place. Results with the equipment will allow the 

characterization research to move forward without the dependence of outsourcing optical meta-

materials.   

 

 



 

 

2 

 

1.1 Importance of Interference Lithography 

 “Since the beginning of the microelectronics era, the minimum feature length of an 

integrated has been reduced at a rate of about 13% per year and will have reached 50nm by the 

year 2010 [13:8].” As technology has ascended into the 21
st
 century, electronic devices have 

become smaller in scale than in previous years. So far, this trend has stayed true to Moore’s Law, 

which states that the number of transistors manufactured onto chips doubles every two years. 

This is due in part by the approaches of lithographic processes to construct optical circuitry at the 

nano-scale. Nano-scale accessibility has become increasingly important in the areas of physics 

and chemistry for advances in nanotechnological development. The importance of the new 

science involves increased surface/volume ratio and quantum phenomena. The semiconductor 

industry has well-established optical lithography as the manufacturing choice for fabricating 

integrated circuit (IC) technology. Optical lithography traditionally incorporates a mask-based 

technique into constructing microstructure circuitry [2]. In photolithography, a photosensitive 

material called photoresist (PR) coated on substrate material is exposed to a monochromatic light 

source through a mask. The mask, which contains geometric shapes transfers to the PR layer and 

represents only one level of IC design. The mask image defines various regions of an IC, but 

resists patterns are only replicas and are a representation of the circuit features in a final device. 

To produce permanent circuit features, an etching process transfers the patterns into underlying 

layers comprising a device. The etching process selectively removes unmasked portions of a 

layer to transfer the pattern. The entire process with additional p-n junction fabrication steps is 

shown in further detail in Figs. 1.1 and 1.2  
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Fig. 1.1 Beginning photolithographic stages of p-n junction fabrication. (a) An n-type Si 

substrate wafer. (b) An oxidized Si wafer. (c) The application of PR on top of the oxidation 

layer. (d) PR exposure through the mask [13:12]. 
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Fig. 1.2 Final stages of p-n junction fabrication. (a) The Si wafer after the PR has been 

developed. (b) SiO2 removal. (c) The final results after a complete lithographic process. [13:13]. 

 

 

 

 

Another technique for optical lithography that does not use a traditional mask-based exposure 

and instead creates microstructures by light interference is interferometric lithography.  The 

advantages of interferometric processes include one-step large area recording and defect-free 

processing [14]. These interference patterns can be manufactured to create highly functional two-

dimensional (2D), or three-dimensional (3D) structures by controlling beam properties, such as 

amplitude, phase, wave vector, and polarization [19]. However, this approach can introduce 
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alignment complexity and inaccuracies due to differences in beam coherence length, interference 

angles, and instabilities from free flowing vibrations within an optical setup [8].  

 

1.2 Motivation for Interference Lithography 

Currently, there is no fabrication recipe here at AFIT to develop metamaterial devices with 

IL techniques. AFIT does however have the capability to characterize metamaterials to gain 

knowledge about their unique optical properties. These types of characteristics represent a small 

but significant step within the grand scheme of engineering technology that is highly energy 

efficient.  By designing a photolithography method specific to constructing certain kinds of 

metamaterials, it will then be possible to make considerable advancements through knowledge 

gained to revolutionize optical devices.  

 

1.3 Organization 

This thesis is organized as follows:  

 Chapter II: An overview of interference lithography definition, development, and 

applications. 

 Chapter III: An overview of the equipment, measurement methods, and procedures 

used in this effort.  

 Chapter IV: Results and Discussion of the documented measurements. 

 Chapter V: Conclusion and further recommendations for the development of in-

house fabrication with interference lithography.  
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II. A Physical and Mathematical Understanding of Interference Lithography and Its 

Application for Novel Optical Materials 

This chapter introduces definitions and the mathematical development of optical interference 

for implementation into photolithography processes. The progression of the information focuses 

on several exposure tools designed to create interference.  This chapter looks at each of their 

technological advantages and limitations for optical lithography. Next, a discussion on current 

work in photolithography will show the performance of different lithographic systems that use 

various fabrication techniques. Finally, this chapter will conclude by describing the potential 

applications of the current optical devices created from interference lithography. 

  

2.1 Interference 

Interference is two or more light waves superimposed to yield a resulting light wave whose 

irradiance differs from the sum of their individual irradiances. There are many common 

manifestations of the interference phenomenon. For example, rough circular color patterns from 

sunlight shinning across an oil slick or the interaction of surface ripples in a pool of water (Fig. 

2.1). The light and dark zones on the surface of the water represent the maxima and minima of 

interference, respectively. These types of patterns are interference fringes [11:385].  
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Fig. 2.1 Water waves from two in-phase point sources in a ripple tank. The waves represent 

interference fringes of maximum and minima [11:386]. 

 

 

Although light interference can take many forms, there are certain conditions that must be 

met in order to replicate interference with beams of light. For instance, a stable interference 

pattern can only be produced if the light beams are very near the same frequency.  With that said, 

white light can still produce observable interference due to the elemental colors interfering. Reds 

will interfere with reds, and blue with blues until the overlapping monochromatic patterns 

produce a single total white-light pattern. The highest resolution patterns occur when the 

interfering light waves have equal or nearly equal amplitudes.  A resulting contrast of the 

maxima and minima of the interference fringes corresponds to constructive and destructive 
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interference, respectively. Lastly, for a fringe pattern to be observed, the interfering light sources 

must be coherent, or otherwise, the result is a shifted pattern from a phase shift difference within 

the interference pattern [11:390]. 

 

2.2 Wavefront-Splitting Interferometers 

The dilemma in producing interference of two or more light sources is that they must be 

coherent. Other than the use of a laser, no means exist for combining two separately independent 

coherent sources to generate interference. To solve this problem, a method was developed by Dr. 

Thomas Young to produce interference in which light from a single source was separated into 

two light waves and then recombined. Young’s experiment, depicted in Fig. 2.2, superimposed 

cylindrical waves from a double-slit aperture to produce constructive and destructive interference 

from a single source [11:393]. 

The following equations were derived from Optics Fourth Edition in Ch. 9 and explain the 

geometry of interference for Young’s experiment [11:393-396]. Constructive interference for 

Young’s experiment will occur when  

 

           

 

(1) 

where r1is the path of difference of B to P in Fig. 2.2(c), r2 is the path difference of S2 to P, m 

is the mth order of the interference maximum, and λ is the source light wavelength. 
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Fig. 2.2 Young’s Experiment. (a) Cylindrical waves superimposed in the region beyond the 

aperture screen. (b) Overlapping waves showing peaks and troughs. (c) The geometry of 

Young’s experiment [11:394]. 

 

 

 

 

 

 

(b) (a) 

(c) 



 

 

10 

 

Then, the position of the mth bright fringe is obtained through 

 

    
 

 
   

 

(2) 

where ym is the distance of the mth bright fringe and the center of the slits, O, s is the distance 

between the aperture screen and the double slits, and a is the period of slits S1 and S2. The 

angular position of the fringe is  

 

 
   

  

 
 

 

(3) 

The spacing of the fringes and the difference in the positions of the two consecutive maxima is 

 

    
 

 
  

 

(4) 

Since the interference pattern is equivalent to that for two overlapping spherical waves 

 

 
                    

 
 

 
 

 

(5) 

where I is the interference irradiance, Io is peak irradiance, and δ is the phase difference. 
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Using the phase difference  

 

            

 

(6) 

where k is the magnitude of the wave vector. In combination with equation (5), I can be rewritten 

as  

 

 
        

 
        

 
 

 

(7) 

given that the beams are coherent and have equal irradiances,   .  

With  

 

        
  

 
 

 

(8) 

the resultant irradiance becomes  

 

         
 
   

  
 

 

(9) 
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2.2.1 Lloyd’s Mirror 

Among only a few other interferometers, the Lloyd’s mirror relates to the same physical and 

mathematical considerations as Young’s experiment. Also, a wave-front-splitting interferometer, 

the Lloyd’s mirror consists of either dielectric or metal that serves as a mirror, from which a 

portion of a source cylindrical wave front from slit S (as in Fig. 2.3) is reflected and made to 

interfere with the portion of the incident wave that directly proceeds to the aperture screen from 

the source. The conceptual arrangement of the Lloyd’s mirror is depicted in Fig. 2.3 to show how 

the fringe pattern is complementary to that of Young’s experiment. A distance, a, is the 

separation of the two coherent light sources at the actual slit and its image S1 due to the mirror.  

The spacing of the fringes is again (s/a)λ. The following equations explain the interference 

geometry for the Lloyd’s mirror [11:399]. 

The reflected beam of this device at incidence (θi = π / 2) undergoes a 180° phase shift and an 

additional phase shift of ±π gives,  

 

              

 

(10) 

and the irradiance becomes  

         
 
   

  
 

 

(11) 



 

 

13 

 

The phase shift in the Lloyd’s mirror gives a fringe pattern of maxima and minima that exist in 

the opposite of Young’s double-slit device [11:399]. Another design configuration of the Lloyd’s 

mirror is illustrated in Fig. 2.4. This setup uses a monochromatic light source to make 

interference fringes with period of  

 
  

 

     
 

 

(12) 

where λ is the laser wavelength, and θ is the incident angle upon which laser light reflects from 

the mirror onto a viewing screen [3]. 

 

 

Fig. 2.3 The Lloyd’s mirror schematic [11:399]. 
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Fig. 2.4 Lloyd’s mirror interferometer. 

 

As the incident angle of the reflected beam increases, the fringe spacing decreases causing 

the optical path difference (OPD) (shown in Fig. 2.5) to change, therefore, decreasing the mutual 

coherence of the interfering beams [3]. A decreased coherence also limits the visibility of the 

interference fringes. Visibility, V, for a uniform Lloyd’s mirror produced interference pattern is 

defined as 

 

 
  

         

         
 

 

(13) 

where Dmax and Dmin are the maximum and minimum values of the sinusoidal distribution of the 

inferring beams.  
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Fig. 2.5 Optical path Difference (OPD) (a) in the Lloyd’s mirror interferometer and (b) visibility 

as a function of coherence length Lc [3]. 
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The visibility can also be written is terms of the coherence length, Lc, of the source laser and 

the OPD in the following equation: 

 
         

     

   
 
 

  

 

(14) 

Fig. 2.5(b) shows the fringe visibility plotted against OPD for various laser coherence lengths. 

The data for laser light with the shortest coherence length has as unstable fringe visibility for an 

increasing OPD. As shown for the plot of Lc = 20m, only a laser beam with a coherence length 

greater than one meter is the fringe visibility stable across a large OPD [3]. 

 

2.3 Amplitude-Splitting Interferometer 

Amplitude-splitting is a technique in which light is partially reflected into separate parts, 

transmitted into different directions, and then recombined upon a surface to produce interference. 

The concern with this type of interferometer is the ability to keep the separated light from 

traveling an optical path difference that does not exceed the coherence length of the source light. 

If the path lengths of the separated beams differ by a distance greater than the coherence length 

of the light, then the recombined portions to create interference would correspond to different 

wave groups. At this point, the interference would be unstable due to a nonexistent common 

phase relationship between the beams, therefore yielding an unobservable fringe pattern 

[11:400]. 
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A Michelson interferometer utilizes an arrangement of mirrors and beam splitters to produce 

interference by means of amplitude-splitting. Its optical configuration is illustrated in Fig. 2.6.  

 

Fig. 2.6 The Michelson interferometer [11:408]. 

 

 

An emitting monochromatic source transmits light waves to a beam splitter at position O, which 

divides the wave in two. The beam splitter is oriented at a 45° angle to direct the split waves 

orthogonally towards mirrors M1 and M2. The two waves are then reflected by M1 and M2 back 

towards the beam splitter at O. Once the waves have returned to position O, the beam splitter 

then channels the reflected beams from M1 and M2 for recombination at the detector aperture. 

The overlapping beams at the detector produce an interference pattern of circular fringes known 

Source

M2

M1

O
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Fringe 
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as Newton’s rings [11:407-410]. Reference Optics Fourth Edition Ch. 9 pages 407 - 410 for an 

understanding of how the Michelson creates interference fringes.  

 

2.4 Interference Lithography 

Interference lithography (IL) is an optical fabrication technique used for transcribing an 

interference pattern into photosensitive material. This technique has emerged as a fabrication 

process for semiconductors and other IC devices using two or more coherent laser beams to 

produce large areas of periodic interference patterns. The period of the interference pattern is 

dependent on the incident angle of the beams and the wavelength of the source laser light (see 

equation (12)). As an alternative to photolithographic processes that use masks to transcribe 

patterns into photosensitive layers, IL is maskless and a more cost effective way to produce 

holographic shapes.  The high-volume potential applications that can be achieved with the use of 

IL will depend on the limits of uniformity, throughput, process control, and repeatability [10]. 

IL transfers an intensity distribution from a small number of coherent interfering beams onto 

a substrate material coated with a photosensitive layer. The intensity distribution, depicted in Fig. 

2.7, of the interference of n coherent laser beams can be described as  

      
 

 

       
   

                       

           

 

(15) 

where Ei, ki,j, and φi denote the amplitude, wave vector, and phase of beam i, respectively [14].  
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Fig. 2.7 Representation of two-beam interference. (a) Coherent laser beams are symmetrically 

incident from the left and the right. The period of the interference pattern is λ/[2nsinθ]. (b) The 

standing wave pattern exists throughout the overlap between the beams as long as this overlap 

distance is shorter than the longitudinal coherence length of the laser beams and the wafer can be 

placed anywhere inside this coherence volume [2, 11:396]. 

 

 

 

(a) 

(b) 
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Photosensitive material, or photoresist (PR), is a radiation sensitive compound that is 

classified as positive or negative, depending on how it responds to radiation. Each is designed for 

specific wavelengths of UV light. Since IL applications tend to operate within the UV 

wavelength spectrum, negative PRs are limited by lower photosensitivity and lower resolution 

compared to positive PRs. Positive resists become more soluble under exposure, and thus, 

exposed regions are easily removed during development. For negative resists, the exposed 

regions become less soluble and bond together after development leaving the unexposed regions 

to be removed. Both tones have their own chemical properties and react differently to various 

levels of exposure dosages. For IL, the purpose of PR is to absorb light interference fringes. This 

occurs when a certain exposure dosage (        specific to the PR is met. Once an exposure 

dose is reached, an interference fringe pattern is developed into the PR by a series of thermal and 

chemical processes [1]. Fig. 2.8 shows two optical configurations for constructing interference 

patterns. Fig. 2.8(a) is a Lloyd’s mirror arrangement applicable for IL. In this setup, two halves 

from an incident source beam fold onto each other by 90° geometry [2].  Fig. 2.8(b) is an 

example of an amplitude splitting interferometer that is useful for source beams that irradiate a 

beam profile other than a single-mode Gaussian TEM00. Ultraviolet lasers tend to operate at a 

large number of transverse modes and consequently yield a very low transverse coherence 

length. A beam splitter, such as an amplitude-spitting interferometer incorporates, provides the 

necessary capability for self-coherence to produce interference fringes by maintaining both an 

equal path length and angular relationship [2]. 
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Fig. 2.8 Experimental arrangements for IL. (a) Lloyd mirror, where the right and left halves of 

the beam are folded onto each other at a 90° geometry. For lasers that exhibit a large number of 

transverse modes and have very low coherence, an arrangement shown in (b) maintains small 

contrast coherence by splitting the beam in half and folding it onto itself [2]. 

 

 

Single-mode TEM00 laser sources with a high transverse coherence are successfully used 

with the Lloyd’s mirror interferometer because of their uniform intensity distributions. Fig. 2.9 is 

a depiction of nanometer PR gratings created from the Lloyd's mirror interferometer which are 

representative of a Gaussian laser distribution. Transverse Electro-Magnetic (TEM) is a term 

used to classify the transverse modes of lasers. Each TEM mode describes the cylindrical 

symmetry of a laser with a specific Gaussian profile. The cylindrical transverse mode patterns 

shown in Fig. 2.10 demonstrate not all laser beams represent a TEM00 mode. For these cases, it is 

still possible to “clean” higher order beam modes to satisfy a single-mode Gaussian profile with 

a spatial filter.  

 

(a) (b) 
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Fig. 2.9 (a) Schematic of Lloyds mirror interferometer. The substrate and mirror fixed at a 90° 

angle to one another, centered in a single incident beam. Rotating the substrate/mirror assembly 

about its center point varies the spatial-period of the exposed grating. (b) The micrograph shows 

a grating with 70 nm lines on a 170 nm pitch [4]. 

(a) 

(b) 
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Fig. 2.10 Cylindrical transverse mode patterns [11:592]. 

 

 

A spatial filter is an optical apparatus that allows for an insertion of filters to partially, or 

completely, block out certain spatial frequencies. This alteration of a frequency spectrum is 

spatial filtering [11:611]. For example, a spatial filter device consisting of a microscope 
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objective and a pinhole aperture removes unwanted multiple order energy peaks from a multiple 

mode laser source (seen in Fig. 2.11). The following equation determines the diameter of the 

input beam through the pinhole aperture:  

 
                        

          

 
 

 

(16) 

where λ is the laser wavelength (µm),  f is the focal length of the objective lens (mm), and D is 

the input beam diameter (mm). Furthermore, the preferred pinhole diameter from the calculated 

beam spot size is given by   

 

                                                   

 

(17) 

where the 1.5 factor  represents the ideal factor for transmitted optimal power through the 

pinhole aperture while eradicating as much higher mode noise as possible [9].  

 

 

Fig. 2.11 Spatial filter schematic consisting of an objective lens and pinhole aperture [9]. 
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 Repetitive arrays, like those in Fig. 2.9(b), have the effect of producing periodic alterations 

in phase and amplitude to emerging waves, and are referred to as diffraction gratings. Upon 

reflection from these kinds of gratings, light scattered from the periodic surface features will 

arrive at a certain point with a definite phase relationship. The consequent interference pattern of 

maxima generated from reflection is expressed by the grating equation [11:476-477],  

 

            

 

(18) 

   

which is equation (3), but without a small-angle approximation. A more specific approach for the 

location of mth orders is considered in  

 

                   

 

(19) 

   

where m is dependent on light incidence from the reflecting surface and θm = θi corresponds to 

the zeroth order, m = 0. It is to be noted that this expression is applicable regardless of the 

refractive index of the grating itself. An illustration of the reflection phase gratings is shown in 

Fig. 2.12 [11:477-478]. 
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Fig. 2.12 The Reflection Phase Grating. (a) Diffraction orders from the reflection grating. (b) 

Geometry of the reflection grating included the grating equation [11:478]. 

 

 

2.4.1 Two-Dimensional  Interference Patterns 

Now that using interference has been established as a means to create periodic fringe arrays 

in PR, it is also possible to develop those patterns into two-dimensional structures. Constructing 

two-dimensional structures is not exactly a difficult interference task. For instance,  a patterned 

2D square array can be produced by two single-shot IL exposures overtop each other with the 

second exposure performed after a 90° rotation [2]. This is just one of many methods to 

(a) (b) 
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demonstrate 2D interference, but the real challenge is PR development which can make 

producing interference seem like a trivial problem. 

Interference fringe orientation, exposure dosages, and resist tone, to name a few, are just 

some of the problems associated with 2D pattern development and nearly the most essential for 

producing high-contrast structures.  For example, at low exposure doses of a positive tone 

process, such that an exposure is sufficient to clear the resist during development, holes form 

where the maxima of the two-interference exposures overlap. For higher doses where the 

exposure clears the resist, posts form where the minima overlap. The occurrence of holes and 

posts reverses in negative PRs. To eliminate the need to interchange resist types for hole and post 

structures, a process known as image reversal produces negative tone images in positive resist. 

Moreover, image reversal resist structures are produced in the exact opposite sequence for high 

and low exposure dosages. This process generates high-resolution periods with reduction in 

process sensitivity and improves resist performance by increasing resist contrast [7]. Interference 

feature details such as, period consistency, structure depth, and thicknesses of PR layers are 

sensitive to exposure dosages.  

 

2.5 Applications 

This section applies the background information discussed in previous sections to describe 

the present applications for interference fabrication technology. The focus here is on photonic 

crystals and plasmonic structures. The purpose of this section is to promote the advantages of IL 

by showing the significant potential of each device. 
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2.5.1 Photonic Crystals 

A photonic crystal (PC) is a periodic optical structure designed to affect the motion of 

photons of incident light with a periodic modulation in refractive index comparable to the 

wavelength of the incident light. This process is similar to semiconductor devices that create 

energy band-gaps from the flow of electrons. The interest in PC’s is the prospect of 

manufacturing new optical components by fully controlling the existence properties of optical 

media [14]. 

In PC’s, the interference of the light waves scattered from a crystal lattice leads to photonic 

band-gaps (PBG’s). A PBG is analogous to energy band-gaps in that it acts as an optical 

conductor by capturing and projecting light into certain directions. The optical properties of a PC 

with an inclusive PBG provide great interest because of their light redistribution abilities. 

Refractive index contrast, lattice symmetry, and the capacity of high-index materials all 

determine the bandwidth and frequency of a PBG. PC’s have the potential for advances in 

various applications including, ultra-high-bandwidth integrated optical circuits, lasers, sensing, 

spectroscopy, and pulse shaping [15]. 

 IL allows complete control of lattice symmetry for the design of microstructures in a PC 

[19]. The shape and size of recorded structures are determined by the intensity spectrum of the 

interference area, as well as by experimental parameters such as PR type, initial PR thickness, 

developer concentration, contrast of the interference pattern, etc [17]. The design of a PC has to 

contain a threshold intensity surface able to obtain a high contrast pattern [19]. For a 

multilayered photonic crystal structure, a thick PR, such as the negative-tone SU-8 suffices in 

fabrication.  SU-8 has low absorbance and is highly soluble in the near-UV and visible 
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wavelengths. High refractive index structured PR can even be used to obtain a PC by doping it 

with metallic particles or dyes [15]. For example, chemically amplified PRs are typically used in 

processes where a high liquid-glass transition temperature (Tg) value is desired to achieve 

submicron resolution in UV lithography. During UV exposure of chemically enhanced SU-8, 

acids are released in localized regions where a subsequent post-exposure bake accelerates acid 

diffusion.  This is highly undesirable during exposure and ultimately disrupts an interference 

pattern due to a change in refractive index. A high Tg minimizes acid diffusion during a post 

exposure bake and facilitates in maintaining a constant refractive index through multiple 

exposures. Alternatively, loading photosensitizers into a resist film compliments a high Tg by 

partially neutralizing acid diffusion generated during exposure. Control of acid diffusion, in 

photolithography, improves resist contrast by photosensitized dyes chemically amplifying the 

crosslinking of SU-8 [15]. Fig. 2.13 shows the sensitivity curve of photosensitized SU-8 PR  as a 

function of exposure dose from  two-beam interference.  The sensitivity curves represent the 

normalized pattern contrast of feature size (d) scaled by the feature distance (p) that is related to 

both the cross-linking and development dissolution of the PR.  As shown, the increasing dosage 

energy produces a steeper change in crosslinking to create a higher contrast pattern. The slopes 

of Fig. 2.13 indicate that the SU-8 film loaded with a 0.5wt% H-Nu470 photosensitizer yield the 

highest contrast pattern. Note that the photosensitive material is particular to visible light, which 

is appealing in the photolithography of PCs because a longer wavelength allows for a larger 

lattice period [15].  
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Fig. 2.13 Sensitivity curve of visible SU-8 PR with different loadings of photosensitizers [15]. 

 

 

 

2.5.1.1 Two-Dimensional Photonic Crystals 

Two-dimensional photonic crystals are designed from periodic microstructures on a dielectric 

medium, which consists of a thin film of high-index refractive material on a low-index substrate 

[16]. This design enables the ability to control the dispersion of radiation [20]. The structures in 

Fig. 2.14 represent exposures in positive PR at (a) 90° and (b) 60° to generate columns of cubic 

and hexagonal lattices, respectively. The construction of these structures follows the scheme in 

Fig. 2.15.  
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Fig. 2.14 2D structures recorded by double holographic exposure. (a) Cubic lattice and (b) 

hexagonal lattice. The size of the scale bar is 0.5μm [17]. 

 

 

 

 

 

Fig. 2.15 Scheme of the fabrication process for the 2D structures [17]. 

(a) (b) 
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In this process, resist is spun onto glass substrates with an initial metal deposition and 

exposed twice with 1D interference fringes. After development, the resist is used as a mask for a 

metal liftoff process. During the liftoff process, a metal is deposited onto the resist pattern to 

remove the PR. The remaining metal structure retains the same period and is used as a template 

for an etch procedure. The final PC shown in Fig. 2.16 is that of columned holes formed from 

reactive ion etching (RIE) into a a-C:H deposition layer on top of a glass substrate. 

 
 

 
 
 

 

Fig. 2.16 2D structures with hexagonal lattice recorded in a-C:H film. The size of the scale bar is 

1μm [17]. 
 

 
 

 

 

A periodic dielectric structure can produce optical band gaps that can be observed in 2D 

square lattices for designs in passive optical devices [7]. An examination of TE and TM 

polarization within the constructed lattices can offer insight into optimal device characteristics. 

Additionally, the band-gap comparisons of the above metal structures make it possible to 

                    1µm 

 

                     1µm 
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determine which pattern has a more significant PBG. Fig. 2.17 shows a calculated PBG graph for 

the TE and TM polarizations for the two structured PCs.  The (r/a) is the ratio of the hole radius, 

r, and the center-to-center length of the unit cell, a. Observe that the (r/a) limit is 0.5 and 0.67 for 

the circular and elliptical holes, respectively. For cases in which these values are increased 

beyond the calculated limits, the dielectric material is represented by columns instead of holes. 

 

 
 

 
 

 

Fig. 2.17 Gap map for a hexagonal lattices of: (a) circular holes (E=1) and (b) elliptical holes 

(E=2), in a dielectric material with refractive index n = 2 [17]. 

 

 

 

 

 The circular holes band diagram of TE polarization exhibits larger PBG areas in comparison 

with that of the elliptical holes. However, the reduction of the band gap for TE polarization 

allows for a TM polarization PBG area within the elliptical holes material.  Although the PBG 

area is reduced for the elliptical dielectric structure, it is still capable for the design and 

(a) (b) 
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fabrication of hexagonal PC’s [17]. Furthermore, the development of 2D PC’s is not limited by 

the IL technique used to create the periodic structures. Using diffractive grating masks for IL, 

Divliansky et al. fabricated a 2D CdSe PC by electrodeposition of CdSe in a polymer template. 

The PC was synthesized from an initial development of a polymer template produced by 

exposure of PR by a first-order diffraction pattern created by three-beam interference. The 

optical arrangement used to create the diffraction pattern, shown in Fig. 2.18, expanded a 

collimated Nd:YAG laser beam across a mask of three gratings oriented 120° relative to one 

another. The diffraction mask featured gratings that were 2-μm wide and 4-mm long separated 

by 2-μm [7]. 

 

Fig. 2.18 Schematic representation of the (a) three-grating diffraction mask, and (b) optical setup 

for creating the hexagonal interference pattern [7]. 

(a) 

(b) 
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At the focal point of the diffraction pattern, a sample of negative resist was exposed to return 

a hexagonal array of PR columns with a diameter and period of 1.3 and 2.7μm, respectively [19, 

7].  Also, by reducing the dimensions of the gratings and the wavelength of the laser, the band 

gap can be scaled for visible wavelengths. The scanning electron microscope (SEM) images of 

the resulting hexagonal array of PR columns and CdSe holes are shown in Fig. 2.19 [7]. 

 

 

 

Fig. 2.19 Optical and SEM images showing the (a) side view of the negative PR columns created 

by IL, and (b) CdSe PC following CdSe electrodeposition and PR removal. The diameter and 

pitch of the hexagonal array of air voids are 1.3 and 2.7 µm [7]. 

 

 

 

Diviliansky et al. characterized the CdSe PC using a Bruker Equinox 55 Fourier-transform 

infrared spectrometer (FTIR) with a mid-infrared source and deuterated triglycine sulfate 

(DTGS) detector. Fig. 2.20 represents the measured FTIR spectra of the CdSe PC normalized at 

0 and 40 degrees to its indium-tin oxide (ITO) coated glass substrate. At a wavelength of 4.23 

(a) (b) 

                      2µm                               5µm 
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um and from the measured incident angles, a sharp depression in transmission is observed. As 

the incident angles increase, the transmission of the CdSe drops and reaches a maximum of 2.6 

dB at 40 degrees. A sample of cylindrical air voids was formed in positive PR to accurately 

mimic the CdSe PC to verify the results. The test sample demonstrated a similar drop in 

transmission at the same wavelength despite its lower refractive index. This solidified that the 

drop in transmission resulted from the hexagonal structure with the drop becoming more defined 

as the contrast of the index of refraction increased [7]. 

 

 

 

Fig. 2.20 Transmission spectra of CdSe and polymer PCs that have been normalized to the ITO 

substrate transmission spectrum [7]. 
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2.5.1.2 Sub-Micron Two-Dimensional Photonic Crystals  

Interference fringe periodicity at sub-micron levels is used for fabrication of nano-strucutred 

2D PC’s. In order for this operation to work, a lithographic technique must then be capable of 

reaching nano-sized fringe interference.  As previously stated in equation (12), fringe period is 

dependent upon the angle of interference and wavelength of the source laser. Manufacturing 

optimal interference modulations into the nanometer spectrum requires both a deep UV laser as 

well as high incidence angle. As the literature shows, the Lloyd’s mirror interferometer has the 

potential for sub-micron periodicity which makes it highly applicable in the thermoelectric field. 

Thermoelectric devices concentrate on waste-heat-to-energy conversion and temperature 

regulation [1]. Hochbaum et al. observed a substantial increase in thermoelectric efficiency with 

decreasing diameters of etched silicon nanowire that showed properties superior to grown silicon 

nanowires [1]. The process for fabricating vertical plasmonic nanowires with uniform diameters, 

shown in Figures 2.21 and 2.22, requires a combination of metal-assisted etching with laser IL 

[1]. Here, J. de Boor et al. employed a doubled argon-ion laser at a wavelength of 244nm for IL 

with a Lloyd’s mirror interferometer to develop an array of PR posts. The graph in Fig. 2.21(e) 

represents the various post structure periodicities of the argon-ion 244nm wavelength laser 

created from an increasing angle of incidence. The slope indicates experimental results 

performed and that near 100nm fringe spacing is possible at angles of incidence approaching 

90°. 
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Fig 2.21 (a)–(c) Laser Interference Lithography (LIL) combined with O2 plasma produced arrays 

of PR posts. (d) A Lloyd’s mirror interferometer allows the periodicity of the PR posts to be 

determined by adjusting θ, the angle between incident beam and the substrate normal. (e) SEM 

micrograph of PR posts before O2 plasma treatment; scale bar 200 nm. The overlay shows the 

periodicity as function of θ for a wavelength of λ = 244 nm and the crosses mark experimental 

results [1]. 

 

 

The metallization process in Fig. 2.22 illustrates the capability of metal assisted etching to 

form uniform nanowires. To obtain the silicon nanowires, a metal evaporation of 20-nm thick 

gold is first completed to prepare for a lift-off of the PR. The lift-off removes the PR and leaves a 

metal film behind on top of the silicon. This is done to replicate the diameter of the resist posts. 

(a) (b) (c) 

(d) (e) 

                                                          

200nm 
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In the final step, metal assisted etching dissolves the silicon that is in direct contact with the 

metal layer, consequently leaving behind silicon nanowires [1]. 

 

 

 

 

Fig. 2.22 (a) Metal evaporation, (b) lift-off and (c) metal-assisted etching lead to vertically 

aligned arrays of Si nanowires, shown in (d). The wires have a diameter of around 350 nm, a 

periodicity of 710 nm and a length of several micrometers. The TEM image in (e) shows the foot 

of a nanowire and the substrate. The high resolution magnification in (f) proves that the wire and 

substrate form a single crystal. The scale bars are 2 μm, 10 nm and 5 nm in (d), (e) and (f), 

respectively [1]. 

 

 

 

 

(a) (b) (c) 

(d) (e) (f) 
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2.5.2 Plasmonics 

The study of plasmonics describes light interactions with fabricated metal nano-scale 

structures that produce electric surface waves known as plasmons. A plasmon is an oscillation of 

electrons on metal surfaces created from light capture on a metal interface, due to interaction 

with free electrons. Surface plasmons have gained enthusiasm for the purpose of confining light 

at a metal-dielectric interface in a sub-wavelength capacity. This process generates intense local 

electromagnetic fields applicable to photonic devices. The potential for such devices has been 

demonstrated with enhanced optical transmission through sub-wavelength metal apertures. In 

this process, light is transmitted through periodic sub-wavelength holes surrounded by materials 

of various refractive indexes and configurations [6].  

 

2.5.2.1 Enhanced Transmission with Plasmonics 

Enhanced transmission relies upon the periodicity of structured apertures for the formation of 

plasmons from coupling of light at a metal interface [5]. “For a given wavelength, a photon in 

free space has a wave vector that is always smaller than the corresponding plasmon, which 

means that the momentum conservation required for their coupling cannot be fulfilled [6].” A 

periodic grating of slit apertures scatters incident light into various diffraction orders across a 

metal surface to match diffracted light with its plasmon waves. A Bragg relation, represented in 

equation (20), describes a new wave vector created from such a grating, 

 

          (20) 
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where     is the wave vector of the plasmon mode, G is the reciprocal lattice vector and    is 

the in-plane vector component of incident light. From diffraction at the input aperture of hole 

arrays, light is coupled into plasmon modes and then decoupled at the exit side into freely 

propagating light. The consequent coupling of plasmon modes enhances the electromagnetic 

field above the holes and increases the probability of transmission from tunneling.  The excited 

surface plasmons display peak wavelengths (   ) within a transmission spectrum predicted by  

 

 

    
 

      
  

     
     

 

 

(21) 

where   and   are the dielectric constants of the metal and the adjacent medium, respectively; i 

and j represent the orders of scatter from the array, and P is the lattice constant. This equation 

implies that the period and the dielectric constants of the interfaces are adjustable. Therefore, it is 

possible to tune the peak wavelengths of surface plasmon modes.  Intensity values for periodic 

hole arrays are shown in Fig. (2.23) for apertures surrounded by asymmetric (Fig. 2.23(a)) and 

symmetric (Fig. 2.23(b)) refractive indices. Clearly, the transmission intensity is much larger for 

apertures in contact with materials of matching refractive index [6].  Further implementation of 

this relation can be applied to other plasmonic structures to control transmitted light existence by 

enhanced transmission methods.   
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Fig. 2.23 Normal incidence transmission spectra and images (insets) of a hole array (period, 250 

nm; hole diameter, 130 nm) fabricated in a 200-nm-thick Ag film evaporated on quartz substrate 

(refractive index n1=1.46). (a) Exit surface in contact with air (n2=1). (b) Exit surface convered 

with a film of glycerol (n3=1.47) [6]. 

 

 

 

 

 

2.5.2.2 Directional Transmission 

Standard electromagnetic theories state that light diffracts in all directions from sub-

wavelength holes. In contrast, enhanced transmission in single-slit plasmonic structures (Fig. 

2.24) can concentrate transmitted light into a diverging beam by surrounding the opening with an 

appropriate grating on the exit side of the metal interface. Hence, the decoupling of surface 

plasmons into a material with certain refractive index can be used to confine the diverging beam. 

 

 

 

(a) (b) 
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Fig. 2.24 Electron micrograph of a slit surrounded by periodic corrugations in a Ag film (slit 

width, 50 nm; groove period, 600 nm) [6]. 

 

 

Figure 2.25(a) shows a measured intensity of angular divergence for a slit surrounded by 

periodic corrugations on both the input and output sides. The input side corrugation couples the 

incident light, while the output side controls the beaming. Simply changing the refractive index 

on the output surface changes the beaming pattern, as shown for maximum transmission in 

Figure 2.25(b). “One can therefore imagine controlling the output beam direction by using a 

liquid crystal whose index can be varied by applying an electrical potential, as has already been 

demonstrated for switching the transmission intensity in hole arrays [6].” 
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Fig. 2.25 Angular transmission-intensity distributions of a slit (width, 50 nm) in a Ag film 

surrounded on the input and output sides by corrugations of the same periodicity (P = 600 nm): 

(a) with both interfaces surrounded by air and (b) with one interface covered with a thin film of 

PMMA. Both measurements are at the same wavelength of 690 nm, which corresponds to the 

longest wavelength transmission peak. The incident light was normal to the surface, whereas the 

transmission collected at various angles [6]. 

 

 

 

 

 

2.5.2.3 Plasmonic Absorption  

Contrary to enhanced transmission, absorption characteristics can be applied to plasmonic 

structures to produce a perfect blackbody. Kirchhoff’s definition of the transmission and 

absorption relationship states that an object which absorbs all light is known as a blackbody. A 

perfect blackbody absorbs light radiation at any wavelength and all incident angles while not 

producing reflected or transmitted light. Blackbodies are currently made from graphite or 

material covered with black paint that contains graphite particles. Although plasmonics are made 

with metal surfaces, which reflect most light, the properties of the metallic films can be altered to 

(a) (b) 
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match blackbody surfaces by manufacturing an appropriate refractive index. The excitations of 

surface plasmons to change physical properties of periodic metallic structures make it possible to 

achieve perfect absorption. Metallic gratings can act as perfect absorbers when Bragg resonances 

occur to transform incident light into surface plasmons, consequently converting light energy 

into thermal energy.  It has been found that nanostructure metallic gratings with deep height 

modulations and tuned refractive indices guarantee strong light absorption. Take, for example, a 

gold plasmonic nanostructure blackbody made of 90-nm gratings. It was experimentally 

demonstrated to absorb 97-99% of light in a wavelength range of 240-550-nm at incident angles 

of 0-75° for both TE and TM polarized light [12]. 

To produce a blackbody it is necessary to develop a coating layer with the best absorbing 

characteristics (Fig. 2.26). In order to understand absorption of the designed system, consider Fig 

2.26(a) of a thin coating layerof thickness, d, of the refractive index, n, and absorption 

coefficient, k, in N = n + ik. “The combination of n   1 and small k provides almost total 

absorption of light in the covering layer when d is much larger than the wavelength of light,   . 

The fact that n   Nair guarantees the absence of reflection from the first interface and the 

imaginary part of the refractive index assures the total light absorption in the covering layer 

provided, 

 

          

 

(22) 
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Fig. 2.26(b) shows the absorption coefficient of the coating layer of the thickness d = 140nm as a 

function of n and k. It is clear that one can obtain absorption at the level of 90% in the absorbing 

layer at the n = 1.3 and k = 0.5 for   = 400nm. Therefore, the layer with the index of refraction N 

= 1.3+0.5i would guarantee a very strong absorption of visible light [12].” 

Although materials with a refractive index such as the one just described are difficult to find 

in nature, optical materials with this desired index can be found upon further investigation into 

metamaterials. Thus, a metal nanostructure with a specific geometry could be fabricated to tune 

refractive indices to values that would guarantee strong light absorption. Such a structure is 

depicted in Fig. 2.26(c) and was made of deep gold gratings deposited on Poly-methyl- 

methacrylate (PMMA). The metal nanostructure has a thickness of about 100 nm and can be 

used as an effective antireflective and absorption coating layer that possesses the capability for 

strong light absorption within the UV and visible spectrum. By adjusting the width of the gold 

nanostructures, the reflection and transmission spectrum can be controlled for both TE and TM 

polarization. The birefringence of this device therefore indicates potential usefulness as a 

reflection polarizer [12].  
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Fig. 2.26 Schematics of plasmonic blackbody. (a) Schematic view of the coating layer on a 

substrate. (b) A contour plot of the absorption coefficient in n-k coordinates. (c) The geometry of 

a 1D sub-wavelength grating [12]. 
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2.6 Chapter Conclusion 

The continued growth of the electronics industry is in direct result of the capability to 

transfer smaller and smaller circuit patterns onto material wafers. This chapter has been 

presented as the foundation for the following research within this document. It focused on optical 

laser theory for the development, design, and fabrication of optical devices. The mathematics for 

the different types of interferometers is quite congruent and limited only by optical design. The 

applications of photolithographic fabrication have been key enablers for the continued growth of 

the technology. Among the promising devices are photonic crystals and plasmonic structures, 

which demonstrate unique optical properties governed by specific geometric features. These 

devices have demonstrated aspects that are crucial to understanding the potential of laser 

interference lithography and the capabilities the technology possesses for advancing 

metamaterial devices.   
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III. Equipment, Measurements, and Procedures 

 

This chapter describes the equipment, measurements, and procedures used in this effort. A 

description of the equipment used in this research pertaining to both optical and clean room tools 

will assist in outlining the measurement methods. For each experiment, schematics will illustrate 

the types of optical interferometers used in making IL and a detailed description of clean room 

techniques will be presented. Finally, the lithographic procedures for developing a fabrication 

recipe will be explained.  

 

3.1 Optical Equipment: Multimode Laser 

This section gives a description of the main monochromatic light source used for creating IL 

in this study.  The Kimmon Koha Helium-Cadmium laser operates at duel wavelengths of 325nm 

and 442nm. For the purposes of photolithography, UV light sources are the most prominent for 

optimizing interference fringe period into the sub-wavelength spectrum. Thus, all measurements 

and experiments in this study were performed using the 325nm beam at an unchangeable output 

power of 35mW. The output beam has a manufacture specification diameter of 1.47mm, a short 

coherence length of 4in, and functions at a TEM multiple-mode. The multimode beam profile 

shown in Fig. 3.1 was mapped with, (a) - (b) knife-edge profile and (c) Coherent Beam-code 6.2 

software package. The measured 325nm beam diameter was 1.2mm as depicted in Fig. 3.1(b). 

Fig. 3.1 (c) is a modified illustration of the beam profile to express the distinction between the 

manufacture diameter specification and the measured beam diameter. This discrepancy will 

affect the overall intensity distribution of the interference pattern as discussed in Chapter IV.    
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Fig. 3.1 Kimmon Koha HeCd 325-nm multimode laser beam profile. (a) Knife-edge power plot 

of the 323nm laser beam. (b) Derivative of the knife-edge power plot. It is the beam profile in the 

x-direction. (c) The Beam-code 6.2 graph of the 325 nm laser profile which shows the distinction 

of the manufactures beam diameter vs. the measured beam diameter. 

1

 2
= 1.2    

(a) (b) 

(c) 
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A uniform Gaussian laser is ideal for IL, so a spatial filter was considered for use to eliminate 

the higher order wave modes of the UV laser. Using equations (16, 17) with λ = 325 nm, f = 20 

mm, and D = 1.2 mm, a 10-µm pinhole was calculated as the best aperture for filtering the 

multiple mode beam.  With a “clean” beam now radiating from the pinhole, its divergence was 

collimated to measure an accurate output power. A very low power of 10 µW was measured at 

the central lobe of the resulting airy pattern, which is where the beam carries the most uniform 

intensity distribution. Since this reduction in power is unacceptable for interference lithography 

application as discussed in Chapter IV, the remaining experiments described herein do not adopt 

spatial filtering of the Kimmon Koha UV laser beam. 

 

3.2  Clean Room Materials and Equipment 

3.2.1 Materials: Substrate and Photoresist 

Germanium was one of the first materials used in semiconductor fabrication dating back to 

the first transistor in 1947. However, in the 1960s, silicon replaced germanium because of 

several dominant advantages.  For example, silicon has a wider band gap than germanium, 

meaning silicon devices are capable of operating at higher temperatures. Perhaps the most 

important aspect of silicon is its low-cost and elemental abundance [13:2]. Silicon served as the 

substrate of choice in this study for these very reasons.  

The PR selection for this study was based on its potential for meeting the demands of sub-

wavelength IL. S1818 and S1805 positive resists were used for the strict purpose of acquiring 

100-nm interference fringe spacing; however, the spin coat ratio data presented in Fig. 3.2 does 

not support a process for manufacturing samples to accept nano-scale IL. Fig. 3.2 plots the 
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various spin coating rates to produce specific S1800 series PR thicknesses. As the spin speed 

increases, the thickness of the resist film decreases.  Photolithography at the nanometer scale 

traditionally requires a 2:1 fringe period to PR thickness without the need for an adhesive 

support layer between the substrate and PR layers. This ratio assures that the PR fringe walls do 

not topple over themselves after resist development. Based on the thickness limitation for S1800 

PR, a process for spin coating silicon samples was devised to support the abilities of each 

individual interferometer, which is discussed in further detail within the respective IL experiment 

sections (3.3.1 and 3.3.2). 

 

Fig. 3.2 S1800 series plot of PR spin coating speeds. The spin speed application of PR on a 

substrate determines the resist thickness. Note that resist thickness limitations of S1818 and 

S1805. S1805 resist is more suitable than S1818 for creating interference fringes into the 100-nm 

range [18]. 
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3.2.2 Clean Room Equipment: Mask Aligner, Surface Profilometer, SEM  

 

This section describes the clean room instruments used to view and verify experimental 

fabrication results. The Karl Suss MJB-3 mask aligner is an instrument used in traditional 

photolithography to transfer mask patterns to PR. The mask aligner used in this study served as a 

tool to gauge PR thicknesses on a substrate to make sure initial coatings of PR were at the 

predicted levels for the IL experiments. In this process, half of a newly PR coated substrate was 

exposed under UV light, while the other half was left unexposed. The exposed region was then 

developed away, leaving the exposed region of PR to be fed through a surface profiler. A surface 

profiler is designed to measure feature sizes and in this case, the thickness of the PR layer.  

The Alpha-Step IQ surface profiler uses profilometry to measure film thickness. In this 

technique, a stylus drags across a film surface of step features. When the stylus encounters a 

feature, a signal variation indicates the feature height. Fig. 3.3 shows a schematic of the 

profilometer.  This instrument has the ability to view uniform features from 5µm down to 

100nm, but is recommended only for uniformly structured samples; otherwise, the stylus will not 

be able to measure feature sizes accurately [13:56]. 

The preferred method for viewing samples with sub-wavelength features sizes is with a 

scanning electron microscope (SEM). Unlike optical microscopes, the Hitachi S-4700 SEM is 

able to view sample features down to 1.5 nm. An SEM uses electrons to illuminate samples as 

opposed to visible light used in optical microscopy. Since the wavelength of electrons is smaller 

than that of visible light, an SEM is capable of imaging at much higher magnification but with a 

consequence. At higher magnification, the samples will experience a charging affect from 

increased electron flow making PR samples susceptible to overcharging. To combat this effect, a 
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100-angstrom layer of gold was sputtered over all samples before being viewed with the SEM. 

The gold layer acts as a conductor for the increased flow of electrons at high-resolution. Instead 

of overcharging the resist structures, electrons were conducted at the gold layer so that the 

patterned features were not destroyed.  

 

 

 

 

 

 

Fig. 3.3 Schematic drawing of a surface profilometer [13:56]. 
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3.3 Procedures 

The following section describes the experimental procedures done in this study with both the 

Michelson and Lloyd’s mirror interferometers. The Michelson experiment was done as a trial 

process to develop a proof of concept for IL.  The Lloyd’s mirror experiment, however, is an 

attempt to study the limitations of IL with the equipment presented, and more importantly, 

construct a fabrication template to produce uniform interference fringes on a sample of PR.  

 

3.3.1 Michelson Experiment: Setup and Measurements 

The Michelson interferometer built for this study followed the schematic in Fig. 3.4. It 

consisted of a beam expander, shutter, amplitude-splitting interferometer and a sample holder. 

The beam expander, located between the laser source and the interferometer, is comprised of 

both bi-convex and plano-convex lenses. The purpose of the beam expander is to magnify the 

source beam of 1.2 mm to 12 mm (0.6 in) to allow maximum area of exposure upon a sample. 

The bi-convex lens has a ½-in diameter with a 20-mm focal length and the plano-convex lens has 

a 1-in diameter with 200-mm focal length. Both lenses are UV fused silica (UVFS) and have 

anti-reflective coatings (ARC) for a wavelength spectrum of 290 nm-370 nm. The lenses were 

placed at approximately 220-mm (8.6-in) apart to successfully expand and emit a collimated 

beam into the Michelson interferometer. The interferometer setup is comprised of a 2-in 50:50 

UVFS 250-450-nm coated beam-splitter and two 2-in UV enhanced aluminum mirrors. Lastly, 

the sample holder was positioned 48 cm from the Michelson to accept incident interference 

radiation.  
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Fig. 3.4 Michelson interferometer consisting of a (1) beam expander, (2) shutter, (3) UV mirrors, 

and (4) beam splitter. 

 

 

Silicon samples of 500-μm thicknesses were coated with S1818 resist at 4000 RPM for 30 

seconds to yield a 1.8-µm layer of S1818. In order to show the flexibility of the Michelson 

interferometer, 1D and 2D fringe patterned samples were made using single and multiple 

exposures, respectively. The Beam-code measurement of the 1D interference fringes before 

sample exposure for the Michelson interferometer is shown in Fig. 3.5. The fringes are 

represented by the peaks and troughs of interference in the red and blue regions, respectively. 

Given this data, an exposure dosage of 173mJ/cm
2
 was estimated in conjuncture with the 

exposure dosages plotted in Fig. 3.6, yielding an exposure time of 17.8 seconds. The plot in Fig. 

3.6 represents the approximate exposure dosages of specific resist thicknesses for S1800 series 

PR. The graph varies with no correlation to a defined sequence or set of equations and is not 

applicable to the research done herein. However, the purpose for the presentation of Fig. 3.6 is to 
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show that an exposure template for exposure dosages of resist thicknesses designed for sub-

wavelength IL had to be manufactured through experimentation.  

 

 

 
 

 

 

Fig. 3.5 The (a) 3D plot and (b) contour plot of the measured Michelson 1D interference fringes.  

The red regions represent the maxima and the dark blue the minima of the fringes. 

 

 

 

Fig.3.6 A plot of exposure dosages for various PR thicknesses for S1800 series resist. This plot 

does not show data to support sub-wavelength IL and therefore was not used as a template for 

creating a fabrication recipe [18]. 

(a) (b) 



 

 

58 

 

3.3.2 Lloyd’s Mirror Experiment: Setup and Measurements 

      

The Lloyd’s mirror optical arrangement shown in Fig. 3.7 consists of the corner cube 

interferometer described in section 2.2 and the same expander configuration utilized by the 

Michelson. The Lloyd’s mirror mount is comprised of a mirror and sample mount connected 

atop a rotational stage. The reflecting mirror is a 2-in square UV enhanced aluminum mirror and 

the sample holder houses a 2-in square vacuum chuck. In order to capture the largest area of 

interference on samples, there is no separation between the mirror and the sample slide once each 

piece is in place. An SH05 Beam Shutter system placed at the aperture of the laser controlled the 

exposure time of the beam incident on a sample. It utilizes a rotary, electro-mechanical actuator 

to provide sub-millisecond shutter operation. Fig. 3.8 utilizes equation (12) to plot the 

interference fringe spacing created by the Lloyd’s mirror interferometer design given the HeCd 

UV laser wavelength. In this experiment, the Lloyd’s mirror was positioned at 45° to the incident 

laser beam to produce an interference fringe period of 230 nm. 

 

 

Fig. 3.7 Optical configuration of the Lloyd’s Mirror interferometer. 
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Fig. 3.8 Calculated interference fringe periods of the Kimmon Koha HeCd 325 nm wavelength. 

 

 

 

 

The power collected by a detector aperture area of              at the Lloyd’s mirror was 

17 mW, yielding an incident irradiance on the detector to be about 24mW/cm
2
. This irradiance 

was assumed to be uniform over both the mirror and sample of the Lloyd’s mirror configuration. 

The research done with this interferometer only tested interference at 230 nm from a 45° 

inclination angle as shown in Fig. 3.8. Therefore, the actual irradiance on the Lloyd’s mirror was 

reduced to                              .The average irradiance was then 2 * 17 

mW/cm
2
 since the samples are collecting both direct and reflected laser radiation, resulting in an 

irradiance of 34 mW/cm
2
. Finally, the peak irradiance of the maxima interference fringes was 
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136 mW/cm
2
, from four times the average irradiance assuming perfect fringe visibility. 

However, using equation (14), an OPD =      and the 4-in coherence length of the Kimmon-

Koha HeCd laser, visibility could be as low as 0.95, slightly reducing this peak irradiance. By 

maintaining constant variables such as exposure dosage, PR thickness, PR development, and 

incident angle, an exposure time of 1 second yielded the best interference fringes with the optical 

equipment used in this study.  

 

3.3.3 Clean Room Procedures 

The clean room segment of this experiment consisted of sample preparation, measurement, 

and development. In sample prep, 1 cm
2
 silicon samples were cleaned by a three-step process. 

First, the samples were spun at 500 RPM and sprayed with acetone and methanol for 30 seconds 

followed by a 30-second distilled water (DI) rinse. After solution cleaning, the samples were 

dried with N2 and baked on a hotplate for two minutes at 110°C to evaporate any surplus of 

condensation.  Next, the samples were coated with S1805 positive resist at 8000 RPM for 30 

seconds to produce a resist thickness of 350 nm measured by the Alpha-Step IQ profilometer. 

Fig. 3.9 shows an ideal ratio of 2:1 resist thickness as a function of fringe period. For this 

experiment, a resist thickness of 350 nm was attained in order to maximize the capabilities of 

S1805 by striving to reach the thinnest deposit layer possible, even though the optical 

configuration called for a deposit layer of 460 nm for an interference period of 230 nm. Sample 

development after resist exposure was the last step in the clean room process. Each sample was 

developed with Microposit 351 5:1 developer for 30 seconds and then rinsed with DI water. 
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Fig. 3.9 Ideal 2:1 ratio of PR thickness (nm) per interference pattern period (nm) without the 

need to an adhesion layer. 

 

 

 

 

 

3.3.4 Sample Characterization 

To prove that a 230-nm interference grating was transferred successfully, sample features 

were verified after exposure with a mathematical rearrangement of equation (19) in the 

following:   

 
           

  

 
          

 

(23) 

For   θi = 0 - 90°, a = 230 nm, and λ = 325 nm, the angle θm was calculated as a function of m 

values.  These values represent for the rearranged reflection grating equation that m = -1 is the 
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only diffraction order which can be used for sample characterization. Fig. 3.10(a) plots θm as a 

function of m values for  θi = 45°. The slope indicates that m = -1 is able to be viewed at 

 θm ≈ -45°. By referring to the schematic in Fig. 3.10(b), it is then possible to find a minimal 

value for θi that the m = -1 diffraction order can be viewed. Fig. 3.11(a) plots θi as a function of 

θm and verifies that θi must be 45° to view m = -1 diffraction at θm ≈ -45°. Lastly, Fig. 3.11(b) 

plots all θi to detect the m = -1 diffraction order at Δθ. These results were roughly verified with 

the placement of a detector at Δθ = 10° and a scan of the entire reflection angle field., which 

successfully verified a 230-nm grating of S1805 for θi = 50°. It is to be noted that this process is 

independent of refractive index of the periodic structure because equation (23) is usable 

regardless of the material index. 

 

 

 

Fig. 3.10 The reflection phase grating plot for (a) mth order of diffraction and (b) schematic of 

the m = -1 diffraction order created by a 230-nm grating produced by the Lloyd’s interferometer. 

 

(a) (b) 
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Fig. 3.11 Reflection phase grating plots for finding, (a) θm, and (b) Δθ for given values of θi of 

the 230-nm Lloyd’s Mirror Interferometer grating. 

 

 

(a) 

(b) 
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3.4 Chapter Conclusion 

This chapter described the equipment, measurements, and procedures used in this study. It 

illustrated the combination of the mathematical definitions of IL and physical measurements. 

The measurement equipment was introduced for an understanding on the interferometer 

applications. The concepts of IL presented in the graphs throughout this chapter were 

demonstrated in the procedures and are fully realized in the results chapter.  
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IV. Results and Discussion 

 

This chapter focuses on the results from the procedures of both the Michelson and Lloyd’s 

mirror interferometers. The operations of the optical equipment and the interferometers will be 

discussed and sample results will be presented. The results will provide information about the 

successfulness of each interferometer and its operational capabilities for the pursuit of creating 

an ideal fabrication recipe with the equipment provided.  

 

4.1 Laser Profile , Spatial Filtering, and Processing Environment 

 

To create evenly structured high-resolution features by photolithography, typically the source 

laser beam is described as a TEM single-mode Gaussian because a single-mode laser outputs an 

equal drop in intensity distribution. A Gaussian laser assures the production of a homogenous 

interference pattern that can be transferred uniformly into a resist film. A large coherence length 

is equally as important to photolithography as a uniform intensity profile. Large-scale pattern 

transfer requires a long coherence length because interference for such an operation produces 

large OPDs.  However, it is important to note that visibility can also be relatively high with short 

coherence lengths and that only an increasing OPD affects feature resolution. The Kimmon Koha 

UV TEM multimode laser has an inconsistent intensity distribution, short coherence length, and 

only one power setting. An inconsistent intensity can lead to erratic and unpredictable exposure 

dosages while the coherence length limits the ability for large-area interference.  In an attempt to 

produce a uniform intensity distribution, a spatial filter was used to filter out higher order modes 

to create a single mode Gaussian. This resulted in an airy disk pattern with a central lobe power 



 

 

66 

 

of 10 µW.  However, a large exposure time of over an hour was the result from such a low power 

output and no pattern transfer was ever identified at this setting. To produce minimal defects 

within pattern transfer, IL is based on high exposure dosages at a low exposure time. A long 

exposure time can leave an optical configuration susceptible to air currents, table vibrations, and 

a high concentration of dust particles flowing in the path of the laser.  In the end, it will be shown 

the Kimmon Koha HeCd laser used without a spatial filter to maximize sample irradiance was 

entirely adequate to perform IL because of the small, 1-cm
2
 samples exposed. Using equation 

(14) for fringe visibility, for the Lloyd’s mirror setup with OPD =      and Lc = 4in, visibility 

is always greater than 95%.  

IC fabrication facilities require clean room processing, especially in the areas of 

photolithography. The need for a clean room arises because dust particles can settle on optics and 

on samples, causing defects, which can result in circuit failure. These types of instabilities can 

create diffraction rings from laser light bending around particles that reside on optics or from 

dust on a sample, which can block laser light by acting like a mask.  Imagine a hypothetical 

situation of exposing a 200-mm wafer for 1 min in an air stream at 30 m/min within a class-10 

clean room (350 dust particles of 0.5µm and larger per cubic meter). The air volume that goes 

over the wafer in 1 minute is given by,              
    

 
 
 

                 . Then, 

the number of particles contained in the air volume is 350*0.942 = 330 particles. This is 

equitable to 82% of 400 IC chips on a wafer infected by at least one particle count of 0.5µm or 

larger [13:61-62]. Now, if the same scenario is applied to the 1-cm
2
 samples used in this study, 

the air volume over the samples in 1 minute is given by,              
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                  and the number of particles contained in the air volume is 350*0.0024 = 

0.8 particles. This indicates a relatively small probability of contamination if operating in a class-

10 clean room. Unfortunately, the experiments in this study were performed in an optical lab not 

classified as any level of clean room environment and the results suffered accordingly.  

 

4.2 Michelson Experiment 

 

Feature dimensions for the Michelson interferometer are dependent on angles of interference 

as stated in equation (12). The smallest feature period possible is always half the wavelength of 

the source laser because at the largest incident angle of 90°, sin (90°) = 1. Therefore, the fringe 

period is   
      

           
         . However, it is not possible for the Michelson 

interferometer to reach such a θi because the design is limited by interference created from tilting 

the reflecting mirrors. θi  = 0.1° is the largest angle to be expected from the Michelson design, 

thus producing a pattern period no smaller than 100μm.  

The interference fringe patterns transferred to S1818 layered silicon samples for the 

Michelson interferometer are shown in Fig. 4.1. The 1D fringe array created from a single 18-

second exposure has a 120-μm period. Each feature (dark lines) has an approximate width of 

100μm. The 1D array in Fig. 4.1(a) is not uniform, but it is representative of a successful trial.  If 

looked at closely, the 1D pattern transitions from thin to thicker features sizes scaling from left to 

right. Positive resists develop away once exposed, so the thicker resist lines represent 

underexposure. The thicker regions on the right of Fig. 4.1(a) are areas of underexposure. This 

could be due to irradiance variations of the Kimmon Koha HeCd laser as depicted in Fig. 3.5.   
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The 2D PR structure of posts was made from two 17-second exposures and has a 167μm 

period.  The post diameter and height of the posts is 60μm and 0.38μm, respectively. The 

resulting post heights are shorter than the initial 1.8μm PR layer, which suggests the possibility 

of overexposure. The fact that the resist structure is that of posts and not a 2D square array 

confirms overexposure. Overexposure occurred from backscatter of light reflecting from the 

silicon substrate causing more light exposure to the sidewalls.  

These results are indicative of a PR fabrication process not fully realized but do prove 

photolithographic processes are possible with a Michelson interferometer.  The limitation of the 

Michelson interferometer to conceive only small angles of interference prevented the production 

of sub-wavelength fringe periods and is the ultimate reason no further research with this design 

was pursued. Therefore, this experiment can be viewed simply as a proof of concept for 

developing 1D and 2D PR structures by interference lithography. 

 

 

Fig. 4.1 The Michelson interferometer S1818 samples of (a) 1D fringes with a period of 120μm 

and peaks 102μm wide and (b) 2D posts with a period of 167μm and dots 60μm wide. 

(a) (b) 

                 100µm                  150µm 



 

 

69 

 

4.3 Lloyd’s Mirror Experiment 

This section covers the results of the IL fabrication recipe for the LM interferometer. The 

Lloyd’s mirror interferometer was successful in reaching sub-wavelength fringe periods and 

results correlated with measured data. Through trial and error, an ideal exposure dose of 

136mJ/cm
2 

for a 350-nm layer of S1805 showed much potential. Since the exposure dose was 

successful, Fig. 4.2 plots the matching exposure dosages for increasing angles of incidence.  

 

 

 
 

Fig. 4.2 Lloyd’s mirror exposure dosages (mJ/cm
2
) for increasing incident angle values given an 

ideal exposure time of 1 second. 
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The peak irradiance curve decreases with increasing θi because the power of the reflected light 

from the Lloyd’s mirror spreads over a larger area. Therefore, the exposure time increases to 

compensate for the loss in power. For example, at θi = 75°, peak irradiance is 50 mW/ cm
2
, and 

exposure time is 2.72 seconds; the exposure dosage is 50 mW/cm
2 
* 2.72 sec = 136 mJ/cm

2
. Fig. 

4.2 assumes all other variables, such as PR thicknesses and laser power, maintain constant values 

as previously presented. 

The SEM results are of one sample from the Lloyd’s mirror experiment at multiple regions, 

all exposed with an irradiance of 136 mJ/cm
2
 for 1 second at θi = 45°. The white lines in the 

SEM pictures represent PR features at a period of approximately 230nm.  Note that all SEM 

pictures show multiple vantage points of one sample because entire samples were not exposed. 

This is due to the beam diameter difference shown in Fig. 3.1. After exposure, each 1-cm
2
 

sample indicated an exposure across about 75% of the surface area. A beam diameter of 1.47cm 

was magnified from the manufacture specification of the initial beam diameter of 1.47mm and 

was theoretically sufficient for exposing a 1-cm
2
 at θ = 45° in the Lloyd’s mirror as shown in 

Fig. 4.3. However, the dissipation in the intensity profile that represented close to 20% of the 

1.47-cm beam diameter as shown in Fig. 3.1(c) was representative of the remaining unexposed 

regions of the samples. This drop in intensity was not enough to create visible interference 

fringes within those regions of the resist layers. Therefore, it is assumed that the 1.2-cm diameter 

accounted for the transferred fringe patterns because 1.47cm*(75% exposure area) is 1.1cm, 

which is approximately the measured 1.2-cm beam diameter. 
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Fig. 4.3 Exposure area of the 1.47cm laser beam. This diagram indicates that half of the     

beam diameter of 1.47cm is sufficient in exposing an entire 1-cm
2
 sample. However, the actual 

measured expanded beam diameter was 1.2 cm, which did not expose an entire sample. 

 

 

 

 

In each SEM capture, the entire section is exposed to the interference pattern but not all 

regions show successful pattern transfer and Figs. 4.4 - 4.6 are prime examples of this. The lower 

resolution fringe patterns in the dark regions suggest (1) the laser interference is not uniform to 

this extent, (2) the PR thickness is not evenly distributed, (3) dust particles blocked light 

exposure to the particular area, or (4) poor adhesion of the PR structures to the Si substrate.  

Again, considering the laser profile of Fig. 3.1, the non-uniformity of the irradiance depicted 

would be spread across the expanded beam. The full extent of Figs. 4.4 – 4.6 is approximately 

12µm, 25µm, and 12µm, respectively. This is less than 2% of the entire beam profile. It is 

unlikely there would be this kind of intensity variation across such a small region.  

0.707 cm


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The sample fabrication procedure for the Lloyd’s mirror experiment coated silicon samples 

with S1805 resist at a spin speed of 8000 RPM. It is assured that at the center of each sample, 

there is an even PR coating at this speed and any loss in the consistency of the PR layers resides 

at the corners of the samples. The exposures shown in the following SEM were performed on or 

near the center of each sample, and therefore, are representative of interference patterns in a 

uniform PR deposition.  A plausible explanation for the pattern difference over such large 

distances (µm) is from imperfections on the sample surfaces such as scratches and dust. The dark 

regions in Fig. 4.5 resemble an area where the PR most likely was scratched off or may not have 

deposited properly. The more grey regions suggest an area where dust may have settled and 

blocked some of the laser light, resulting in underexposure. Another justification for the variation 

of pattern transfer is poor adhesion. Since no adhesion layer was added it is quite possible that 

the initial PR deposition did not adhere to the substrate firmly. Thus, during exposure the 

interference pattern did not translate correctly into the PR and most likely evaporated during 

development processes.  

The sample depicted in Fig. 4.7 is a rather odd and unusual result. At first glance, it appears 

that a diffraction pattern created from either dust or some other obstruction was transferred into 

the resist film. Judging by the shape of the anomaly, however, it would seem that this conclusion 

is quite inaccurate. Recall, the Lloyd’s mirror was positioned so that light was interfering at a 

45° angle, meaning a diffraction pattern would not be as symmetric as the one shown in Fig. 4.7. 

Instead, the pattern would resemble an ellipse, and therefore, show no similarity to a perfect 

circle. It is unsure what caused this type of discrepancy, but it could be due to an obstruction in 
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the layered resist or a defect in the substrate layer consequently affecting the interference fringe 

structure.   

 
Fig 4.4 Top-down view of 230-nm features in S1805. 

 

 
Fig 4.5 Large area capture of 230-nm S1805 features. 
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Fig 4.6 Side-view of 230-nm S1805 features. 

 

 
Fig. 4.7 An irregularity within the S1805 feature consistency.  
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4.4 Chapter Conclusion 

This chapter has presented the results from the experiments done in this study. The 

performance of each lithographic exposure tool was determined by resolution. Resolution is the 

minimum feature dimension that can be transferred with high fidelity to a resist film. The 

Michelson interferometer is a flexible design used for developing a basic understanding of IL 

processing and is not ideal for high resolution structures.   On the other hand, the Lloyd’s mirror 

interferometer proved the possibility of sub-micron period gratings. However, the inability to 

understand the exact cause of the defects within the samples fabricated limited their success in 

terms of uniformity. Furthermore, an understanding of clean room processes and photosensitive 

films is essential for optimizing pattern transfer to uncover an ideal exposure method. 
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V. Conclusion and Recommendations 

The objective of this study was an attempt to bring in-house optical nanostructure fabrication 

methods to AFIT. This entailed a study of optical interferometers and clean room fabrication 

techniques. The purpose was to gain knowledge about the optical capabilities of each 

interferometer in order to create the best possible photolithographic system with the equipment 

available. The goal of the fabrication process was to manufacture a sample development process 

for optimizing repeatability and throughput within experiments.  Laser interference lithography 

(LIL) provides much potential for next generation optical material fabrication. Small feature 

sizes, large interference fields, and the production of high-resolution gratings highlight only a 

few of the accomplishments for developing devices with LIL. The relevance of these abilities is 

directly associated to photonic crystals and plasmonic structures. The capacity of these devices to 

both confine and redeploy incident light waves leads to unique optical characteristics, which 

AFIT is in the position to analyze. The experiments in this thesis fully represent the goals and 

objectives presented herein.  

A photolithographic process transfers patterns of geometric shapes onto a thin layer of 

photosensitive material. The four things that a photolithography system needs in order to operate 

efficiently are, ideally, a TEM00 source laser, laser interferometer, PR, and sample development 

process. A device fabrication recipe builds upon the foundation of these four mechanisms and 

the repeatability of their processes is highly desirable. A TEM00 is ideal for IL, but in this study, 

a multimode laser proved to be sufficient due to small sample sizes. Even with an undesirable 

intensity distribution and short coherence length, gratings of sub-micron periodicity were 

achieved with the Lloyd’s mirror interferometer. However, further knife-edge measurements of 
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the expanded beam should be performed to accurately gauge the beam intensity distribution and 

total power incident on a sample.  This could provide accurate irradiance values to yield optimal 

exposure dosages for highly visible interference fringes. Ultimately, the results presented in 

Chapter IV were not ideal but they do represent a proof of concept for developing interference 

fringes at a sub-micron level.  

The difficulties within this research dealt with the fabrication processes. A lithographic 

system should operate in a clean room environment or have tools to maintain cleanliness of the 

optics and samples. Optical experiments were performed in a lab not classified as any kind of 

clean room environment and results suffered accordingly. Dust particles jeopardized the 

cleanliness and overall results of samples under test. With no air regulation, optics and samples 

were susceptible to complications in interference fringe transfer. To combat this, a container 

designed to house the optical lithography system should be developed to block dust particles, and 

a N2 source could be used to clean samples before and after exposures. A controlled experiment 

should be performed to test the effectiveness of these alternative methods.   

In accordance with clean room standards, an adhesion layer should be added between the 

substrate and photoresist layers to improve interference pattern transfer regardless of photoresist 

thickness and fringe period.  This will assist etching processes for transferring gratings into 

underlying layers. If an etching process is to be done, negative photoresist should be used to 

absorb the interference patterns because chemical etching can be quite aggressive, meaning 

positive resist structures are unable to withstand such a procedure. Since negative photoresist is 

highly viscous and bonds together during UV exposure, it is more resilient to etching techniques, 

making it ideal for manufacturing permanent grating features. Although, negative resists are not 
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typically employed for nano-scale lithography because the viscosity of the substance hinders it 

from achieving small initial thicknesses. However, the adhesion layer would be most useful in 

this aspect to promote large aspect ratios for sub-wavelength fringe spacing.  

This research was a stepping-stone for making AFIT self-sufficient in nanostructure design, 

fabrication, and development. Unfortunately, the time spent at AFIT to fulfill the objectives 

discussed herein was not enough to present results on a working fabrication procedure.  A better, 

more reliable fabrication recipe is in direct dependence on the environmental conditions of the 

experiments. This study has identified lithographic results from interference with a multimode 

laser and concluded that further research in this area concentrate on optimizing clean room 

procedures to manufacture metamaterial devices.   

 

 

 

 

 

 

 

 

 

 

 



 

 

79 

 

Bibliography 

1.  Boor, Johannes de, Nadine Geyer, Jörg V. Witteman, Ulrich Gösele, and Volker Schmidt. 

 “Sub-100 nm Silicon Nanowires by Laser Interference Lithography and Metal-Assisted 

 Etching,” Nanotechnology., 21(095302),  29. January 2010. 

 

2.  Bruek, S.R.J., “Optical and Interferometric Lithography - Nanotechnology Enablers,” 

 Proceedings of the IEEE., 21(10), October 2005. 

 

3. Byun, Ikjoo and Joonwon Kim, “Cost Effective Laser Interference Lithography Using A        

405nm AlInGaN Semiconductor Laser,” Journal of Micromechanics and 

Microengineering., 20(055024), 23. April 2010.  

4.  Carter, J.M., R.C Fleming, T.A. Savas, M.E. Walsh, and T.B. O’Reilly, “Interference 

Lithography,” Submicron and Nanometer Structures, 2003. 

 

5. Degiron, A. and T.W. Ebbesen, “The Role of Localized Surface Plasmons Modes in the 

Enhanced Transmission of Periodic Subwavelength Apertures,” Journal of Optics A: Pure 

and Applied Optics., 7(S90-S96), 20. January 2005.  

 

6. Dintinger, Jośe, , Aloyse Degiron, and Thomas W. Ebbesen, “Enhanced Light 

Transmission through Subwavlength Holes,” MRS Bulletin, 30, May 2005.  

7.  Divliansky, Ivan B.,Suzushi Nishimura, Iam-Choo Khoo, and Theresa S. Mayer, 

“Fabrication of two-dimensional photonic crystals using interference lithography and 

electrodeposition of CdSe,” Applied Physics Letters., 79(21), 19. November 2001. 

 

8.  Divliansky, Ivan B., and Theresa S. Mayer, “Fabrication of three-dimensional polymer 

photonic crystal structures using single diffraction element interference lithography,” 

Applied Physics Letters., 82(11), 17. March 2003 

 

9. Edmund Optics Inc., “Understanding Spatial Filters,” URL 

http://www.edmundoptics.com/technical-support/lasers/understanding-spatial-filters/. 

10. Fernandez, A. J.Y. Decker, S.M. Herman, D.W. Phillion, D.W. Sweeney and M.D. Perry, 

“Methods for fabricating arrays of holes using interference lithography,” International 

Conf. of Election, Ion, and Photon Beam Technology and Nanofabrication.,  28. May 1997. 

 

11. Hecht, Eugene. Optics. Pearson Education, Inc., San Francisco, CA, 4th Edition, 2002. 

ISBN 0-8053-8566-5. 

 



 

 

80 

 

12. Kravets, V.G., F. Schedin, and A.N. Grigorenko, “Plasmonic Blackbody: Almost complete 

absorption of light in nanostructured metallic coatings,” Physical Review B., 78(205405), 6. 

November 2008. 

 

13. May, Gary S. and Simon M. Sze, Fundamentals of Semiconductor Fabrication. John Wiley 

and Sons, Inc., Danvers, MA, 2004. ISBN 0-471-45238-6.  

14. Moon, Jun Hyuk and Seung-Man Yang. “Multiple-exposure holographic lithography with 

phase shift,” Applied Physics Letters., 85(18), 1. November 2004. 

 

15. Moon, Jun Hyuk, Jamie Ford and Shu Yang, “Fabricating three-dimensional polymeric 

photonic structures by multi-beam interference lithography,” Polymers for Advanced 

Technologies., 17(83-93), 2006 

 
16. Prodan, L., T.G. Euser, H.A.G.M. van Wolferen, C. Bostan, R.M de Ridder, R Beigang, K-

J Boller, and L. Kuipers, “Large-area two-dimensional silicon photonic crystals for infrared 

light fabricated with laser interference lithography,” Nanotechnology., 15(639-642), 9. 

March 2004.  

 
17. Quiñónez, F., J.W. Menezas, L. Cescato, “Band gap of hexagonal 2D photonic crystals 

with elliptical holes recorded by interference lithography,” Optics Express., 14(11), 26. 

May 2006 

 

18. Rohm and Haas, “Microposit S1800 G2 Series  Photoresists for Microlithography 

Applications,” Electronic Material: Microelectronic Technologies., October 2006. URL 

http: // www.microresist.de/products/room_haas/pdf/Microposit_S1800_G2_Serie.pdf.   

19. Su, Hui Min, Y.C. Zhong, X. Wang, X.G. Zheng, J.F. Xu, and H.Z. Wang, “Effects of 

polarization on laser holography for microstructure fabrication,” Physical Review E., 

67(056619), 21. May 2003 

 

20. Sharp, D. N., A.J. Tuberfield, and R.G. Denning, “Holographic photonic crystals with 

diamond symmetry,” Physical Review B., 68(205102), 3. November 2003. 
 

  

 

 

 

 

 

 

 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty 
for failing to comply with a collection of information if it does not display a currently valid OMB control number.   

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
24-03-2011 

2. REPORT TYPE  
Master’s Thesis 

3. DATES COVERED (From – To) 
June 2009 – Mar 2011 

4.  TITLE AND SUBTITLE 
 

Development of Interference Lithography Capability Using a Helium Cadmium 
Ultraviolet Multimode Laser for the Fabrication of Sub-Micron-Structured Optical 
Materials 

 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
NA 

5c.  PROGRAM ELEMENT NUMBER 
NA 

6.  AUTHOR(S) 
 
Crozier, Stanley D., 2d Lt, USAF 
 
 

5d.  PROJECT NUMBER 
NA 
5e.  TASK NUMBER 
NA 

5f.  WORK UNIT NUMBER 
NA 

7.  PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
Air Force Institute of Technology  
Graduate School of Engineering and Management (AFIT/EN) 
2950 Hobson Way 
WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
    AFIT/GE/ENG/11-07 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory, Materials and Manufacturing Directorate 
Dr. Augustine Urbas 
Augustine.Urbas@wpafb.af.mil 
 Materials & Manufacturing  
2977 Hobson Way, Bldg 653 Rm 413 
Wright-Patterson AFB OH 45433-7734 
 

10. SPONSOR/MONITOR’SACRONYM(S) 
AFRL/RX 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
 Approved For Public Release; Distribution Unlimited 
 

13. SUPPLEMENTARY NOTES 
  
This Material Is Declared A Work Of The U.S. Government And Is Not Subject To Copyright Protection Of The United 
States. 
14. ABSTRACT  
The goal of this work is to develop unique holograms on a semiconductor-metal thin films to characterize as potential meta-
materials. This is achievable by developing a fabrication recipe to include exposure methods, exposure dosages, and material 
development. This study developed an interference lithography capability at AFIT for the first time with period resolution 
below 230nm. It also identified initial acceptable photoresist materials and exposure dosages, and a path to follow to optimize 
this process. The potential impact of this is to make IL a standard in optical meta-material fabrication, which decreases 
manufacturing time and allows for less error in production. These aspects support a variety of Air Force applications, including 
high efficiency solar cells and spacecraft thermal management.   

15. SUBJECT TERMS 
Photolithography, Interference Lithography 
16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION OF  
     ABSTRACT 
 
UU 

18. NUMBER  
      OF 
      PAGES 
  92   

19a.  NAME OF RESPONSIBLE PERSON 
Dr. Michael M. Marciniak (ENP) 

REPORT 
U 

ABSTRACT 
U 

c. THIS PAGE 
U 

19b.  TELEPHONE NUMBER (Include area code) 
(937)255-3636 x4529,  
michael.marciniak@afit.edu 

Standard Form 298 (Rev: 8-98) 
Prescribed by ANSI Std. Z39-18 


	AFIT-GE-ENG-1107-Final.pdf
	Crozier_Thesis_(draft)-4-1.pdf
	Crozier.SF298




